50 行代码打造全本地的 RAG 知识检索系统
非常粗糙的示例代码,使用 Ollama 和 LlamaIndex 打造全本地的知识检索系统。
LlamaIndex 的安装方法如下:
python3 -m venv .venv
source .venv/bin/activate
pip3 install llama-index
pip3 install llama-index-llms-ollama
pip3 install llama-index-embeddings-huggingface
pip3 install llama-index-embeddings-ollama
Ollama 的安装可以参考:Debian 12 安装 Nvidia 驱动和 Ollama
在例子中,检索目标为 markdown 格式的笔记,供参考。
使用方法:python3 rag_query.py "分析全部文本内容,分点列出个人成长的建议"
#! /usr/bin/python3
#coding: utf-8;
# author: @henices
from llama_index.core.node_parser import MarkdownNodeParser, SimpleFileNodeParser, MarkdownElementNodeParser
from llama_index.readers.file import FlatReader
from llama_index.core import VectorStoreIndex
from llama_index.core import Settings
from llama_index.llms.ollama import Ollama
#from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.core import SimpleDirectoryReader
from llama_index.core import StorageContext, load_index_from_storage
from llama_index.core import get_response_synthesizer
from llama_index.core.response_synthesizers import ResponseMode
import llama_index.core
llama_index.core.set_global_handler("simple")
from pathlib import Path
import pprint
import logging
import sys
import os.path
if __name__ == "__main__":
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
ollama_embedding = OllamaEmbedding(
model_name="bge-m3",
base_url="http://127.0.0.1:11434",
)
#Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
Settings.embed_model = ollama_embedding
Settings.llm = Ollama(
model="qwen2.5:14b-instruct-fp16",
request_timeout=60.0*5)
Settings.chunk_size = 512
Settings.chunk_overlap = 50
if os.path.exists('./storage'):
storage_context = StorageContext.from_defaults(persist_dir="./storage")
index = load_index_from_storage(storage_context)
else:
parser = MarkdownNodeParser()
md_docs = SimpleDirectoryReader("data").load_data()
nodes = parser.get_nodes_from_documents(md_docs)
index = VectorStoreIndex(nodes)
index.storage_context.persist(persist_dir="./storage")
print('finish index')
response_synthesizer = get_response_synthesizer(
streaming=True,
response_mode=ResponseMode.SIMPLE_SUMMARIZE)
query_engine = index.as_query_engine(
response_synthesizer=response_synthesizer, similarity_top_k=10, similarity_cutoff=0.5)
streaming_response = query_engine.query(sys.argv[1])
print(streaming_response.print_response_stream())
for idx, node in enumerate(streaming_response.source_nodes):
print('%d=========\n' % idx)
print('%s\n\n' % node.text)
参考
50 行代码打造全本地的 RAG 知识检索系统
https://usmacd.com/cn/local_rag_llamaindex/